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In this work, a statistical evaluation of the crack-growth process in high-density polyethylene (HDPE)
was carried out. The specimens were compression molded from virgin, molding-grade HDPE. Edge-
notched specimens for replicate fatigue testing were prepared from compression-molded sheets. Fatigue
test results were then analyzed, and it is shown that if the crack-growth process can be characterized as
a random process following a power-law-type behavior, then the time to reach a critical crack length will
be distributed according to an inverted lognormal model.

1. Introduction

Over the last few decades, solid polymers have become a
popular replacement for conventional metallic materials in
load-bearing engineering applications. Their light weight, ease
of manufacture, corrosion resistance, and relatively lower cost
are desirable properties that have led to their popularity. A
number of advanced engineering plastics such as
polyphenylene oxide (PPO), polyamideimide (PAI),
polyetheretherketone (PEEK), and so forth have been devel-
oped for certain engineering applications where an excellent
mechanical and chemical property combination is required.
These engineering polymers provide much better property
combinations at a relatively higher cost than their more com-
mon counterparts. The conventional less-expensive plastics re-
main a material of choice for the less-critical applications. The
bulk of plastic production still leans toward the conventional,
commodity plastics such as polyethylenes, polypropylenes,
polystyrene, and polyvinylchloride. Some of these polymers
are being used in light-load-bearing applications, such as auto-
motive trim components, hinges and fasteners, small gear and
pinion assemblies, worm and worm wheel parts, and so forth.
These components are often subjected to cyclic loading, al-
though subjected to light loads, due to vibration or other effects
induced during their service life. It is also well known that ma-
terials subjected to cyclic loading fail at a stress level much
lower than the tensile strength of the material. Plastics are no
exception. However, extensive studies on the dynamic fatigue
behavior of solid polymers have not been reported in literature.

ElHakeem and Culver (Ref 1) conducted experiments on the
fatigue behavior of high-density polyethylene (HDPE). They
studied the fatigue-crack propagation (FCP) under different en-
vironmental conditions. An empirical model was developed to

take into account the test frequency, as well as the level and am-
plitude of the stress-intensity factor. The crack-opening dis-
placement and the plastic zone size were also taken into
account in the formulation of this model. Bucknall and Dum-
pleton (Ref 2) carried out experiments on HDPE to investigate
the FCP under load control. The limited applicability of the
Paris equation (dl/dN = C(∆K)n) for the solid polymers was in-
dicated, and the crack-growth dependence on loading history
was demonstrated. In a subsequent work (Ref 3), these workers
conducted a more detailed study of the effects of previous load-
ing history on FCP of three different plastics. Mandell et al.
(Ref 4) have also attempted to study the fatigue resistance of
two kinds of plastic materials.

All of these studies have concentrated on more classic as-
pects of FCP in solid polymers such as effects of level and am-
plitude of stress, environmental effects, loading history, crack
blunting, morphology of crack surface, and so forth. Although
it is well established that, in general, the fatigue behavior of
materials is a probabilistic phenomenon, a few, if any, studies
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Nomenclature

l Crack size, mm
N Number of cycles
C Paris power law constant
∆Κ Stress intensity factor range, MPa√m
n Paris power law exponent
α Crack length at N = 1, mm (random variable)
β Power of crack growth equation, (random

variable)
Φ(N,) Normal cumulative distribution function of

random variable N
A Slope of Φ–1 (Ni, µl, σl) versus lnN line,

where Φ –1(. ) is inverse normal function
B Intercept of Φ –1(Ni, µl, σl) versus lnN line
σmin Minimum applied stress, MPa
σmax Maximum applied stress, MPa
µ(.) Mean of the quantity (.)
σ(.) Standard deviation of the quantity (.)
F(N) P[N≤N], Cumulative distribution function of

number of cycles N

JMEPEG (1999) 8:347-352 ASM International

Journal of Materials Engineering and Performance Volume 8(3) June 1999347



have been carried out in this regard. This behavior should be
more pronounced for the plastics, owing to the variability due
to their molecular-weight distribution, effect of processing pa-
rameters, anisotropy introduced due to molecular-chain align-
ment, presence of crystalline and amorphous regions, and so

forth. In the present study, an effort will be made to investigate
the variability of fatigue properties of the plastic materials and
a probabilistic representation of the crack-growth process. The
model material used in the study was molding-grade HDPE
produced by Saudi Basic Industries Corporation (SABIC). The
specimens were compression molded in the form of 6 mm thick
sheet. The compression molding was done at 170 °C. The
mold was first cooled at 2 °C/min to 100 °C and then at a rate of
1 °C/min to room temperature.

2. Fatigue Testing

Replicate fatigue tests were carried out using the single-
edge-notched rectangular specimen, the dimensions of which
are shown in Fig. 1. The notch was introduced by pressing a pa-
per-cutting razor blade into the edge of the specimen, which
was held in a fixture to ensure a constant depth in all the test
coupons. All tests were conducted under identical test condi-
tions of ambient laboratory environment and testing parame-
ters. A servocontrolled electrohydraulic materials testing
system was used for the fatigue testing. Fatigue cycling was
carried out under sinusoidal loading at a frequency of 1 to 5 Hz
and a stress ratio of R = 0.1 (R = σmin/σmax). Crack-growth
rates were monitored and measured optically by using the
Questar QM-100 (Questar Corporation, New Hope, PA) long-
distance traveling microscope. This microscope provided pre-
cise measurement of the crack length on a digital readout unit
with an accuracy of 0.01 mm. All crack-growth measurements
were carried out using a magnification of 40×. To ensure iden-
tical initial conditions in all test coupons, a fatigue starter crack
of 2 mm length as generated from the notch by fatigue testing at
a higher load amplitude and a higher frequency of 20 Hz. AllFig. 1 Fatigue-crack-growth specimen geometry of HDPE

Fig. 2 Statistical process of crack growth. Crack length versus cycles for HDPE
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crack-growth rate measurements were carried out taking this
starter crack as the initial crack length.

3. Fatigue-Crack-Growth Rate Results

The results of the replicate fatigue-crack-growth rate tests
for the HDPE plate specimens are presented in Table 1. The
same results are graphically shown in Fig. 2 as crack length ver-
sus number of cycles. As can be noticed from Fig. 2, a consid-
erable scatter is observed in the crack-growth data. This scatter

tends to increase with the number of fatigue cycles, or in other
words the scatter increases with increase in the crack length.
For example, at N = 20,000 cycles the crack length in the repli-
cate tests varies from 0.3 to 1.8 mm. At N = 30,000 cycles, the
crack length is distributed between 1.0 and about 5 to 6 mm.

4. Data Analysis

Figure 2 illustrates that the crack-growth process in HDPE
is essentially a statistical phenomenon. Similar sample func-

Table 1 Crack-growth data of HDPE

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
l, mm N l, mm N l, mm N l, mm N l, mm N

0.215 12,000  0.137 12,000  0.301 12,700  0.197 15,100 0.458 10,580
0.671 33,300  0.341 16,440  0.494 16,000  0.326 18,400 0.629 13,270
1.097 43,000  0.543 20,500  0.682 18,700  0.489 21,570 0.841 16,000
1.519 53,100  0.843 30,000  0.822 22,350  0.610 24,500 1.512 21,000
2.995 60,230  1.894 38,200  1.152 26,600  1.563 27,710 2.119 25,000
3.155 61,280  2.114 40,500  1.692 30,420  2.096 30,000 4.298 27,450
3.296 62,777  2.626 42,820  1.914 33,000  2.990 35,400 5.592 29,800
3.690 63,826  3.174 45,800  2.337 35,070  3.750 38,000 7.074 32,250
4.043 63,184  3.936 48,120  2.554 37,500  4.402 40,500 9.903 34,022
4.619 66,384  6.013 50,000  2.676 39,900  5.148 43,700
5.204 67,270 10.104 51,500  2.773 41,900  5.840 46,100
6.671 68,970  2.844 44,500  6.599 48,100
7.332 70,150  8.906 48,700  7.411 51,300
8.307 71,070  9.215 50,000  8.206 54,010
9.596 71,430  9.618 51,500  9.375 57,440

 9.984 53,000 10.066 59,050
10.536 54,500 10.848 61,000
11.058 55,800 11.414 62,500
11.745 56,700 12.001 64,020
12.315 58,000 12.689 65,540
13.003 59,005 13.329 66,920
13.658 60,090 14.294 68,300
14.340 61,490 15.013 69,170
14.890 62,300

Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
l, mm N l, mm N l, mm N l, mm N l, mm N

 0.159 15,400  0.371 11,150  0.624 11,600  0.353 11,700  0.056 13,000
 0.641 19,250  0.645 17,240  1.191 15,625  0.760 17,000  0.623 23,500
 0.766 23,100  1.089 24,120  1.674 19,000  1.238 21,775  1.181 29,500
 0.944 27,040  1.354 26,810  2.782 25,000  2.002 28,700  1.756 36,650
 1.215 31,230  2.166 34,400  3.756 30,000  3.166 37.,920  2.358 42,000
 1.854 35,150  3.304 42,180  5.515 37,280  4.609 44,720  2.853 46,485
 2.378 41,000  4.343 47,750  7.122 42,250  5.790 47,830  3.481 51,000
 2.909 46,000  6.772 55,990  8.791 46,460  6.774 50,930  4.455 57,330
 3.501 50,300  7.358 58,000  9.640 48,500  7.831 53,930  4.982 60,800
 4.044 54,100  8.386 60,160 10.348 50,000  9.588 56,870  5.612 64,000
 4.669 57,100  8.929 62,180 11.016 51,050 10.623 58,700  6.281 67,500
 5.364 61,100 10.051 64,240 11.912 52,000 11.865 60,280  6.708 70,000
 6.798 65,100 11.209 66,350 12.621 53,040 12.686 60,440  7.355 72,800
 8.059 68,050 12.049 68,250 13.362 53,820 13.438 60,510  8.142 75,130
 9.459 71,200 13.225 70,250 14.598 60,550  8.523 77,090
11.214 74,150 13.866 70,970  9.692 79,500
12.502 76,500 14.600 71,790 10.528 82,630
13.827 78,050 16.038 72,205 11.088 83,500
14.346 78,670 11.786 84,320
14.745 79,010 12.788 84,840
15.251 79,470 13.788 84,940
16.106 79,580 15.018 85,000

l, crack length; N, total number of cycles

Journal of Materials Engineering and Performance Volume 8(3) June 1999349



tions of crack growth in metallic alloys have been observed,
and a variety of approaches and models have been used to ana-
lyze such data (Ref 4). For this crack-propagation data, a rather
simple mathematical approach as outlined in a recent paper by
Sheikh and Younas (Ref 5) is used. This approach of reliability
modeling is based on the following characterization of crack
growth and underlying assumptions:

Assumption 1:

l = αN β (Eq 1)

ln l = ln α + β ln N (Eq 1a)

which indicates that the crack-growth process is a power-law
random process with highly correlated increments. Figure 2

represents a set of sample functions of this process. Each indi-
vidual curve (or sample) function of Fig. 2 is fitted to ln l i = ln
αi + βi ln N, in Fig. 3 for i = 1, 2, 3, …, using regression ap-
proach; high R2 values have been observed in each case, which
demonstrates that Eq 1 or 1(a) can be assumed to represent the
crack-growth process of Fig. 2.

Assumption 2: From Eq 1(a), the mean of ln l = µ(ln l  )
and standard deviation of ln l = σ(ln l  ) can be established as
follows:

µ(ln l ) = µ(ln (α)) + µ(β) ln (N ) (Eq 2)

and

σ(ln l ) = [σ2 (ln l ) + σ2(β) ln N 2]1/2 (Eq 3)

where it is assumed that α and β are independently distributed
random variables. Figures 3 and 4 indicate the validity of Eq 2
and 3 for the data presented in Fig. 2. Figures 3 and 4 demon-
strate that both the average of (ln (crack size)) and standard de-
viation of ln (crack size) are linearly varying with respect to ln
N, and their ratio or coefficient of variation of ln l is inde-
pendent of time (Fig. 5).

Assumption 3: It is also important to characterize the evo-
lution of the distribution of crack size as a function of time. At
various time locations N1, N2, …, the distribution of crack size
f (l (N1), f

 (l (N2), …, are plotted in Fig. 6. The vertical axis is F –1

(Ni, µi, σi) = A ln N + B when F –1 (Ni, µi, σi) = Φ–1 (i/(N + 1)).
Figure 6 clearly demonstrates that the quantity ln l is normally dis-
tributed at different ln N. In other words, l is lognormally dis-
tributed at time ln N. Similarly, slopes of ln l versus ln N curves
are plotted in Fig. 7, which demonstrates that their slopes are
also normally distributed.

Fig. 3 ln (l) versus ln (N) plot of realizations crack-growth process

Fig. 4 µ ln (l) versus ln (N) plot
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Thus, all the underlying assumptions of the model pro-
posed by Sheikh and Younas (Ref 5) are fully applicable in
this case. Based on these observations and definition of life
as ln N = (ln lc – ln α)/β, where lc is the critical level of
crack size that can be tolerated using the equivalency of the
probabilistic events P [ l  (t ) ≤ lc] = P [N > N ], the reliability
of the polymer under consideration at any time N will be:

R (N) = Φ[(1 − ln (Nm/ln N )/√Al ] (Eq 4)

The parameters of the distribution R (N ) can be determined by
using linear regression to transformed data as outlined by
Sheikh and Younas (Ref 5). The regression lines to the trans-
formed data are given in Fig. 8 at three different arbitrarily se-
lected critical levels of crack size, which indicate that an

inverted lognormal model can very well characterize these
data. The parameter Al represents the scatter in life at specified
levels of critical crack size. This parameter is related to the scat-
ter of crack growth as follows (Ref 5):

Al = σ2 (β)/µ2 (β) (Eq 5)

The other parameter Cl = ln Nm is related to the median time to
reach critical crack size. Fifty percent of the crack-growth
curves would have reached lc by this time, and that is related to
the average crack-growth characteristics and rate of its propa-
gation as follows:

Cl = (ln (lc) – ln (α))/µ(β) (Eq 6)

Fig. 5 σ (ln (l)) versus ln (N) plot Fig. 6 σ ln (l )/µ ln (l ) versus ln (N) plot

Fig. 7 Normal distribution of ln (l  ) at various time locations
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Figure 9 illustrates fitted curves using parameters Al and Cl
estimated by regression. Fitted distribution represented by non-
parametric distribution indicated by continuous curves are su-
perimposed on the nonparametric distribution.

5. Discussion and Concluding Remarks

In polymeric materials, if crack growth can be modeled as a
random process characterized by l (N ) = α Nβ as in the case of
HDPE, then the time to reach a critical (or threshold) value of
crack size will be distributed according to an inverted lognor-
mal model. The parameters of this model can be directly deter-
mined from crack-growth process parameters. The reliable life
corresponding to specified state of failure p can be determined
as:

Np = exp [Cl /(1 − √Al  Zp)] (Eq 7)

where Zp is the solution of Φ(Zp) = p. These reliability models
can be integrated in a comparative assessment of the products
made by HDPE, part-replacement strategies, and damage-tol-
erance design with polymeric materials. More experimental

studies are needed to integrate it with Paris-law-type charac-
terizations of the crack-growth process.
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